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Abstract

The development of computational fluid dynamics (CFD) methods for unsteady aerodynamic analysis

is described. Special emphasis is placed on considerations that are required for application of the methods

to unsteady aerodynamic flow problems. Two broad categories of topics are discussed including grid

considerations and algorithm development considerations, and example calculations are presented to

illustrate the major points. Although the primary application of these CFD methods is to relatively

low-frequency oscillatory phenomena such as flutter, the ideas that are presented may be of value to

developers of computational aeroacousfics methods for predicting high-frequency acoustics.

Introduction

Considerable progress in developing computational fluid dynamics (CFD) methods for aerodynamic

analysis has been made over the past two decades. 1-3 Although the vast majority of this work has

been on the development of methods for steady-state aerodynamic applications, significant progress also

has been made in developing CFD methods for unsteady aerodynamic and aeroelastic applications. 2"3

This latter work has been focused primarily on potential flow methods, 4 either at the transonic small-

disturbance (TSD) or fall-potential equation levels, although research is concentrated correnfly on

developing advanced codes for numerical solution of the Euler or Navier-Stokes equations)

The development of methods for unsteady applications generally has lagged the development of steady

methods, primarily because of additional complicating considerations that arise for unsteady applications.

Therefore, the purpose of the paper is to describe _the development of CFD methods for unsteady

aerodynamic analysis with special emphasis on the considerations that are required because of the unsteady

application of the methods. These considerations may be divided into two broad categories including

grid considerations and algorithm development considerations. In the category of grid considerations,

the paper discusses (1) the type of grid, (2) generation details, (3) boundary treatment, and (4) mesh

movement. In the category of algorithm development, the paper describes (1) spatial discretizations,

(2) temporal discretizations, and (3) adaption techniques. Also, although the primary application of the

unsteady aerodynamic methods described herein is to relatively low-frequency oscillatory phenomena

such as flutter, the ideas that are presented may be of vaue to developers of computational aeroacoustics

(CAA) methods for predicting high'frequency _oustics_



Grid Considerations

Type of Grid

The first topic in the category of grid considerations is whether a structured or unstructured grid is

used. 5 Generally, either type of mesh topology is applicable to steady or unsteady problems, and the use

of each has advantages and disadvantages. The majority of work that has been done in CFD over the

years has been on developing methods for use on computational grids that have an underlying geometrical

structure and thus are referred to as "structured" grids. For example, Fig. 1 shows a structured grid for the

NACA 0012 airfoil. The grid is of C-type topology, has 159 points in the wraparound dire_on, and 49

points in the outward direction. Unsteady applications of methods developed for structured grids generally

have been limited to relatively simple geometries such as airfoils, wings, and wing-body configurations. 3

Extensions to more complex configurations often require more sophisticated meshing methodologies such

as blocked, patched, chimera, or hybrid type grids. These extensions, in turn, significantly complicate the

solution algorithms. Other difficulties arise in moving the grid for unsteady or aeroelastic motion where

the grid must conform to the instantaneous shape of the geometry being considered.

An altemative approach is the use of unstructured grids. 6 In two dimensions, these grids are

constructed from triangles, and in three dimensions, they consist of an assemblage of tetrahedral cells.

The triangles or tetrahedra arc oriented in an arbitrary way to conform to the geometry, thus making it

possible to treat very complicated shapes. Unsteady aerodynamic and aeroelastic applications of these

methods to complete aircraft configurations already have been made. 7 An unstructured grid for the NACA

0012 airfoil is shown in Fig. 2. s The total grid has 3300 nodes and 6466 triangles. From the figure it

is obvious that the cells are arranged in an arbitrary manner to create a mesh about the airfoil. Figure

3 shows an example of a surface mesh representing the Boeing 747 transport configuration from an

unstructured tetrahedral mesh. 9 The total mesh has 101,475 cells for the half-span airplane. There arc

also over 8000 triangles which lie on the boundaries of the mesh, which include the half-span airplane, the

symmetry plane, and the far-field boundaries. The figure demonstrates that additional aircraft comPonents
such as pylons and eng_ fiacelles can be modeled e_th-ari '_ctured grid. To _i:ther-i_ustrate -

the point, Fig.4 shows the details of the grid and steady pressure coefficient contours on the outboard

pylon and engine nacelle of the 747 airplane. 9 The presSUre coefficierits @ere computed Using an Euler'

code for a fre6s[r_'n Mach humber Moo of 0,84 and an angle of attack _0 of 2_'13°. _ _-;-_ _ "

Generation Details

Concerning grid generation details, for steady-state external-flow applications, grids generally are

constructed to be fine near the body and coarse near the outer boundaries with some type of stretching in

between. This gridding philosophy is reasonably accurate (because of mesh fineness near the body) and

efficient (because of few cells in the far field where flow gradients are small) for steady problems but

may be inadequate for unsteady problems. For unsteady problems, waves that are propagating through

the mesh may be reflected internally if the grid stretches too rapidly. 1°-12 To illustrate this problem,

Fig. 5 shows an example of internal grid reflections. The calculations were performed for a flat plate

airfoil at Moo = 0.85 using the TSD equation on two Cartesian meshes. I° The results shown in Fig. 5(a)

were obtained using a grid where the points in the vertical direction were determined by an exponential

stretching, whereas the results of Fig. 5(b) were obtained using a vertical grid with a more gradual

quadratic stretching. As shown in Fig. 5(a), the real and imaginary parts of the unsteady lift'curve slope

ct° as a function of reduced frequency k have oscillations which are due to internal grid reflections. As

shown in Fig. 5(b), however, the oscillations have virtually disappeared due to the more gradual stretching



of thevertical grid. From these results, it is evident that careful attention should be paid to the stretching

of the grid to alleviate or eliminate intemal grid reflections for unsteady aerodynamic applications.

Boundary Treatment

In addition to possible intemal grid reflections, waves may also reflect off of the outer boundaries of

the mesh, propagate back into the interior of the computational domain, and contaminate the near-field

solution. 10To demonstrate this problem, Figl 6 shows an example of the effects of boundary reflections.

Again the calculations were performed for a fiat plate airfoil at Moo = 0.85 using the TSD equation.

As shown in Fig. 6(a), the real and imaginary parts of et° have oscillations for low values of k due to

boundary reflections. These oscillations, as well as those that occur from internal grid reflections, are of

concern because they occur in the range of reduced frequency where the calculations need to be most

accurate since this is the frequency range where flutter typically occurs. As shown in Fig. 6(b), however,

when so-called nonreflecting far-field boundary conditions I3 are used, the oscillations no longer occur.

This is because the nonreflecting conditions tend to absorb waves that are incident on the boundaries.
From these results, similar to the treatment of internal grid reflections, it is evident that careful attention

also must be given to an accurate treatment of the far-field boundary conditions to alleviate or eliminate

boundary reflections.

Mesh Movement

A final grid consideration in the development of CFD methods for unsteady aerodynamic and

aeroelastic analysis is how to move or deform the mesh so that it continuously conforms to the

instantaneous shape or position of the vehicle. The mesh movement procedure must be general enough

to treat realistic aeroelastic motions of complex aircraft configurations. This can be accomplished by
modeling the mesh with a network of springs as depicted in FigiT. 14 Each edge of each cell is modeled

using a spring, where the spring stiffness km is inversely proportional to the length of the edge. Points

on the outer boundary of the grid are held fixed and the locations of the points on the inner boundary

(aircraft) of the grid are specified either through the aeroelastie equations of motion or the prescribed

unsteady motion. The:displacements of the interior nodes then are determined by solving the static

equilibrium equations which result from a summation of forces in each coordinate direction. In practice,

these equations are solved using a predictor-corrector procedure. The displacements of the nodes are first

predicted using a simple linear extrapolation in time of d|splacements from previous grids given by 14

: ,-- = _rt-1 _z, -- 2_, -- _zn-1 (1)

The displacements of the nodes are then corrected by solving the static equilibrium equations defined by 14

using several Jacobi iterations. To demonstrate mesh movement, instantaneous meshes are presented for

a half-span airplane pitched nose up 15° in Fig. 8(a) and pitched nose down 15° in Fig. 8(b). With

the spring network the mesh moves smoothly to conform to the instantaneous position of the pitching

airplane. The mesh movement procedure using the network of springs is a general method that can treat

realistic motions as well as aeroelastic deformations of complex aircraft configurations.



Algorithm Development Considerations

Spatial Discretizations

For either steady or unsteady flow applications, the residual (right-hand-side of the governing fluid

flow equations) needs to be discretized in space. Generally speaking, there arc two types of spatial

discretizations including central differencing and upwind differencing. 9 Either type of differencing has

advantages and disadvantages depending upon a number of things such as the problem being solved

and the density of the mesh. Specifically, central differencing uses straightforward central differences to

approximate all of the spatial derivatives. This type of approach, though, requires explicitly added artificial

dissipation terms to include dissipation in the solution. The unsteady Euler equations, for example, are

a set of nondissipative hyperbolic partial differential equations which require some form of dissipation

to allow convergence to steady state. Furthermore, the explicitly added dissipation terms)nvolve free

parameters to control the level of dissipation in the problem. In contrast, upwind differencing accounts

for the local wave-propagation characteristics of the flow and thus is naturally dissipative. Consequently,

the upwind-approach does not require the adjustment of free parameters to control the dissipation.

Advantages of the central-difference type spatial discretizations are that they are easier to code and

take less memory than upwind discretizations. 9 A disadvantage is that they tend to smear shock waves and

contact discontinuities and consequently require finer meshes to achieve similar accuracy. Advantages of

the upwind-difference type spatial discretizations are that they tend to minimize the artificial dissipation

in the problem that is being solved, since they are naturally dissipative, and consequently discontinuities

such as shocks and contacts are captured sharply. This attribute of the upwind discretizations in fact

may be important for CAA calculations to help ensure that the dissipation is small and thus does not

destroy the relatively weak acoustic field. A disadvantage of the upwind methods, however, is that they

are generally more diffficult to code and require more memory than central-difference methods.

To demonstrate the sharp shock-capturing features of the upwind approach for the spatial discretiza-

tion of the Euler equations, steady and unsteady results are presented for the NACA 0012 airfoil. 6 Both

sets of results were obtained using the flux-difference splitting of Roe. The steady calculation was per-

formed for Moo = 0.8 and ao = 1.25 ° with the resulting pressure distribution shown in Fig. 9. For

this case, there are shock waves on the upper and lower surfaces of the airfoil. The shocks are sharply

captured with only onegri d point within the shock structure on either surface. Additionally, these sharp

shock capturing features of the upwind method carry over to unsteady cases as well. For example, for the

NACA 0012 airfoil pitching harmonically at Moo = 0.755, s0 = 0.016 °, with an oscillation amplitude

of al = 2.51 ° at k = 0.08i4, instantaneous pressure distributions at eight points in time during a cycle

of motion are shown in Fig. 10. This is a very interesting case since the shock waves on the upper and

lower surfaces of the airfoil periodically appear and disappear during the cycle of motion. It is clear from

the results of Fig. 10, that similar to the steady-state example, the calculated shock waves are sharply

captured with only one point within the shock s-tructure.

Temporal Diseretizations

For unsteady applications, the temporal accuracy and efficiency of the numerical scheme that is used

to integrate the governing flow equations are of significant importance. Generally, there are two types

of time-integration methods referred to as explicit and implicit. 9 Either type of integra_.tio!a _m_e_tho_:!_h_as__

advantages and disadvantages depending upon a variety of factors including the type of unsteady problem,

the density of the mesh, the characteristic frequency of the problem, etc. Specifically, the most commonly

used explicit temporal discretization (for the integration of the Euler or Navier-Stokes equations) is a multi-



stage Runge-Kutta time integration. Codes that are based on a Runge-Kutta integration also typically use

local time-stepping, implicit residual smoothing, and multi-grid techniques to accelerate convergence to

steady state. Local time-stepping uses the maximum allowable step size at each grid point as determined

by a local stability analysis. Implicit residual smoothing permits the use of local time steps that are

larger than those required by the CFL (Courant-Fried-ricks-Lewy) condition. This is accomplished by

averaging the residual with values from surrounding grid points. Multi-grid uses corrections that are

determined on a sequence of grids of different density to also accelerate convergence to steady state.

As for implicit temporal discretizations, factored methods are typically used on structured grids, whereas

relaxation procedures, usually of the Gauss-Seidel form, are used on unstructured grids. The implicit

discretizations may be time-accurate for unsteady problems and they allow large CFL numbers for rapid

convergence to steady state. Generally speaking, codes based on an implicit integration do not require

the above-mentioned techniques for convergence to steady-state, although they usually use local time-

stepping and sometimes use multi-grid.

A typical four-stage Runge-Kutta time-integration scheme that is used to solve the Euler equations

is given by9

Q(O)= Q.

Qo) = Q(O)
1 At 1

1 At 2: Q(o)_  -VR(Q())

Qn+l = Q(4)

(3)

(A five-stage scheme is typically used to solve the Navier-Stokes equations.) With this type of scheme

the residual R at any stage of the scheme is evaluated using the flow variables Q computed in the

previous stage. Although the integration constants 1/4, 1/3, 1/2, and 1 are somewhat arbitrarily defined,

the last constant must be unity, and the next-to-last constant is 1/2 for second-order temporal accuracy.

When time accuracy is not important, such as when marching the equations to steady state, the constants

may be defined otherwise, provided that the resulting scheme has good stability and damping properties.

Advantages of the explicit temporal discretization such as that represented by Eq. (3) are that it is simple

to code and takes less memory than an implicit time integration. A disadvantage, however, is that the

explicit method generally is inefficient for unsteady problems-because of the very small time steps that

are required for numerical stability.

A typical implicit temporal discretization for s tmctu _ grids is a three-factor, spatially-split method
given by

At v_ll,_C] AQ -AtRAt6xA][I+--_B][I+ = (4)I + vol J vol

Equation (4) is written in the so-called delta form where AQ represents the change in flow variables from

one time step to the next. The equation as written is first-order-accurate in time (a second-order-accurate

version simply adds a time derivative term to the right-hand side) and is efficient because each of the

implicit factors on the left-hand side of the equation involves a spatial derivative in only one coordinate

direction. The equation is solved by performing three sweeps through the mesh, each of which uses

one of the implicit factors.



A typicalimplicittemporal discretization for unstructured grids is a Gauss-Seidel relaxation procedure

given by9

Av°--l*I+ m=l_ A+(QJ)A AQj + ,,=l_-aA-(Qm)ASAQ,,, = -R (5)

which is also first-order accurate in time. The relaxation procedure is implemented by first ordering the

ceils that make up the un_lctured mesh, usually from upstream to downstream. Equation (5) is then

solved by performing two sweeps through the mesh, one in the forward direction and one in the backward

direction. As the sweeps are performed, the equation is solved directly for AQj while the values for

AQ,,, am updated in a Gauss-Seidel fashion.

Either implicit method (Eq. (4) or Eq. (5)) requires the calculation of the flux jacobian matrices

represented by A, B, and C in Eq. (4) and by A+ and A- in Eq. (5). These matrices are defined as the

derivative of the respective flux that appears in the residual by the conserved variables Q. Advantages

of the implicit temporal discretizations are that they are numerically stable for large CFL numbers and

consequently enable rapid convergence to steady state. 9 Furthermore for unsteady applications, they

allow the selection of the step size based on the physical problem that is being solved rather than on

numerical stability considerations. A disadvantage though, is that they require more memory than an

explicit method, primarily due to having to store the flux jacobians. Also, the linearization and either

factorization (Eq. (4)) or relaxation (Eq. (5)) errors associated with the implicit methods may be too

large for a given step size and thus contaminate the solution. To illustrate this problem, Fig. 11 shows the

effects of step size on instantaneous pressure distributions using the Gauss-Seidel relaxation procedure of
Eq. (5). s The calculations are for the same pitching NACA 0012 airfoil case presented in Fig. 10. Hem

though, three sets of results were obtained corresponding to using 250, 1000, and 2500 steps per cycle

of motion. The figure shows the instantaneous pressure distribution at one instant in time (instantaneous

angle of attack a(v) equal to 2.34 ° which is 69 ° (kT) into a cycle of motion). These results indicate

that large errors in the strengths and locations of the shock waves on the upper and lower surfaces of the

airfoil can occur when too large of a step size is used (corresponding to 250 steps per cycle). However,

when an appropriately small step size is used (corresponding to 2500 steps per cycle), the correct solution

is obtained with a shock of moderate strength on the upper surface and subcritical flow (no shock wave)
about the lower surface.

Adaption Techniques

Other considerations in the category of algorithm development involve spatial Is and temporal 16

adaption techniques. These techniques arc usually implemented on unstructured grids to produce solutions

of high spatial and temporal accuracy at minimal computational cost. The procedures are applicable to

-'¢itber steady or unsteady aerodynamic problems, although for the unsteady case, special attention is

required to ensure the time-accuracy of the solution. Also, although temporal adaption is normally

applied only to unsteady cases, that need not necessarily be the case.

As for spatial adaption, 15 the technique involves an enrichment procedure to add points in high

gradient regions of the flow. The technique also involves a coarsening procedure to remove points where

they are not needed. This is accomplished by "marking" cells for eitber enrichment or coarsening using

some type of error indicator to judge the local accuracy of the solution. The objective is to pr0duce

solutions of high spatial accuracy at minimal computational cost by simply minimizing the total number

of cells in the grid. Figures 12(a) and 12('o) show the various combinations of cells that are possible for an

unstructured grid of triangles when using enrichment and coarsening procedures, respectively. It is noted



that in three dimensions, when using unstructured grids of tetrahedral cells, many more combinations of

enrichment and coarsening are possible, all of which must be accounted for in the coding of the spatial

adaption techniques.

As an example of mesh enrichment for a steady flow, 5 Fig. 13 shows conical vortex-dominated

(Euler) flow solutions for a 75 ° swept flat plate delta wing at a supersonic freestream Mach number of

1.4. The wing is at 20 ° angle of attack and has 10° of yaw. The solution was obtained by adapting

the original coarse mesh of Fig. 13(a) three times to the instantaneous flow. The final result shown in

Fig. 13('0) is a highly accurate solution of the conical Euler equations, produced by using an order of

magnitude fewer grid points than if a globally fine mesh were used. To demonstrate the spatial adaption

procedures for an unsteady case, results were again obtained for the pitching NACA 0012 airfoil case

presented previously. Figure 14(a) shows the instantaneous adapted meshes obtained using three levels of

enrichment on a coarse background mesh and Fig. 14(b) shows the corresponding instantaneous density

contour lines (Ap = 0.02). The instantaneous meshes and density contours are plotted at the same

eight points in time as before. The meshes (Fig. 14(a)) clearly indicate the enrichment in regions near

the shock waves and near the stagnation points. They also show coarsened regions where previously

enriched regions have relatively small flow gradients. The density contours during the cycle (Fig. 14(b))

demonstrate the ability of the spatial adaption procedures to produce sharp transient shock waves. The

results were obtained with a computational savings of a factor of seventeen in comparison to using a

globally fine mesh for the same case.

Analogous to spatial adaption, temporal adaption 16 may be used to improve the computational

efficiency of explicit time-integration methods for unsteady aerodynamic applications. Temporal adaption

can be thought of as time-accurate local time-stepping where each grid cell is integrated according to the

local flow physics and numerical stability. The efficiency of the method comes from using small time

steps where they are needed and large time steps where they are not. The "trick" is to accomplish this

in a time-accurate manner. Simply stated, the method integrates small cells with small time steps and

large cells with large time steps, as depicted in Fig. 15. Time accuracy is maintained by bringing all of

the cells to the same time level as dictated by the step size of the largest cell.

To demonstrate the temporal adaption procedure, results were once more obtained for the same

pitching NACA 0012 airfoil problem as before. 16 Figure 16 shows calculated results obtained using

temporal adaption and global time-stepping as well as comparisons with the experimental pressure data

of Ref. 17. The two sets of calculated pressures agree very well with each other. This excellent agreement

verifies the time accuracy of the solution computed using temporal adaption, which was obtained at one-

fourth of the CPU time that the global time-stepping solution required. Also, both sets of calculated

results agree reasonably well with the experimental data.

Concluding Remarks

The development of CFD methods for unsteady aerodynamic analysis was described. Special

emphasis was placed on considerations that are required for application of the methods to unsteady

aerodynamic flow problems. Two broad categories of topics were discussed including grid considerations

and algorithm development considerations, and example calculations were presented to illustrate the major

points. Although the primary application of these methods is to relatively low-frequency oscillatory

phenomena such as flutter, the ideas that were presented may be of value to developers of CAA methods
for predicting high-frequency acoustics.
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